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Abstract

Regulatory networks allow organisms to match adaptive behavior to the complex and dynamic contingencies of their native
habitats. Upon a sudden transition to a novel environment, the mismatch between the native behavior and the new niche
provides selective pressure for adaptive evolution through mutations in elements that control gene expression. In the case
of core components of cellular regulation and metabolism, with broad control over diverse biological processes, such
mutations may have substantial pleiotropic consequences. Through extensive phenotypic analyses, we have characterized
the systems-level consequences of one such mutation (rho*) in the global transcriptional terminator Rho of Escherichia coli.
We find that a single amino acid change in Rho results in a massive change in the fitness landscape of the cell, with widely
discrepant fitness consequences of identical single locus perturbations in rho* versus rhoWT backgrounds. Our observations
reveal the extent to which a single regulatory mutation can transform the entire fitness landscape of the cell, causing a
massive change in the interpretation of individual mutations and altering the evolutionary trajectories which may be
accessible to a bacterial population.
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Introduction

Rho-dependent termination is a crucial component of tran-

scriptional regulation in bacteria, and is estimated to terminate

approximately half of the transcripts present in E. coli [1,2]. Recent

studies have shown that this type of transcription termination is

particularly prevalent in prophage and other horizontally acquired

DNA, thus insulating the cell from the deleterious expression of

such elements [3,4]. Rho has also been shown to safeguard

genomic integrity by reducing co-directional collisions between

transcriptional and replication machinery [5,6]. The rho* allele was

initially identified in a set of short-term laboratory evolution

experiments as a major modifier of ethanol tolerance in E. coli

MG1655 [7]. This allele contains a missense mutation (F62L) in

the RNA binding domain of Rho, which has been previously

shown to cause a 20% higher read-through of the termination site

tR1 [8], and raise the dissociation constant for (rC)10 by a factor of

four [8]. The ethanol tolerance caused by rho* can be traced to

overexpression of a few loci (namely the prpBCDE and cadBA

operons [9]), which are also among the transcriptional units

strongly affected by chemical inhibition of Rho-dependent

termination [3]. Mutations to rho have also been observed in

several other laboratory evolution experiments [10–13], although

the nature of their contribution to fitness in those cases is unclear.

Given the pervasive effects on transcription throughout the

genome caused by short term inhibition of Rho-dependent

termination [3,4], we sought to determine the full breadth of

effects of rho*, both on cellular phenotype and on secondary

mutations at other loci. We found widespread effects from both

classes; rho* significantly alters cellular fitness in the presence of a

variety of nutrient sources and antibiotics, and shows epistatic

interactions with mutations at ,5% of other loci in the genome.

Our results illustrate that mutations to rho*, and presumably other

central components of the transcriptional apparatus, facilitate the

rapid generation of broad phenotypic diversity in bacteria, with

significant consequences for the evolution of populations under

stress.

Results

rho* causes diverse, bidirectional changes in transcript
levels

Based on the biological function of Rho, one naturally expects

that rho* cells will show increased transcription immediately

downstream of Rho-dependent termination sites. Indeed, mea-

surements of transcript abundances [3] and RNA polymerase

occupancy [4] have recently shown that after short-term inhibition

of Rho-dependent termination using the compound bicyclomycin

(BCM), hundreds of transcriptional readthrough events are

apparent throughout the E. coli genome, with significant over-

representation of recently and horizontally acquired genomic

regions. In order to assess the effects of rho* on transcriptional
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output during balanced growth, we performed transcriptional

profiling comparing WT and rho* cells using tiling microarrays

(raw data available at the Gene Expression Omnibus; Accession

GSE32022). We then identified genomic regions showing signif-

icant differences in transcript levels between the two genetic

backgrounds (Bonferroni-corrected p,0.01 and greater than

twofold change in representation; see Text S1, Section 1.6). We

found a total of 2535 probes (out of 92794 positions) showing

significant differences, located in 1281 genes and 433 intergenic

regions; a few example loci are shown in Figure S1. We identified

the most significantly perturbed genes in rho* by flagging all cases

for which the median WT:rho* expression ratio for all sense-

stranded probes in a given gene indicated a greater than 1.5-fold

change in expression level; using this threshold, 155 genes were

overexpressed and 44 underexpressed in rho*. The presence of

such a substantial underexpressed fraction again illustrates the

presence of indirect effects of rho* on the genetic regulatory

network, whereas the overexpressed fraction likely represents a

combination of genes overexpressed directly due to transcriptional

readthrough and those altered due to regulatory perturbations.

Consistent with this interpretation, probes which are significantly

overexpressed in rho* cells relative to WT show 1.3-fold enriched

overlap with a set of prophages, insertion sequences, and K-12

specific elements (the MDS42 deletion sites [14]; p = 0.011 by

random permutation of site locations). Probes overexpressed in

WT cells, in contrast, show no significant correlation with MDS42

deletion sites (1.2-fold depletion; p = 0.198).

It is also notable that of the probes identified as significantly

overexpressed in rho* cells relative to rhoWT, 82% of those

overlapping genes were on the antisense strand (cf. 55% for those

underexpressed in rho*; see Figure S2A). A recent RNA-seq study

showed the presence of pervasive antisense transcription through-

out the E. coli genome [15], which the authors presume to be

limited in extent primarily by Rho-dependent termination [15]. In

addition, Peters and coworkers identified 24 novel antisense

transcripts appearing in BCM-treated cells [4], more directly

illustrating a role for Rho-dependent termination in at least some

cases. In order to assess the effects of rho* on previously identified

antisense transcripts, we compared the log-ratios of transcript

levels in rho* vs rhoWT cells along a series of windows centered at

50 bp increments downstream of the 1,005 antisense transcription

start sites identified by Dornenburg et al. [15]. As seen in Figure

S2B, a significant increase in transcription is apparent in rho* cells

along the first several hundred bp of these antisense transcripts,

illustrating a major mechanism through which rho* likely alters

cellular physiology. Furthermore, this analysis does not capture the

effects on antisense transcripts which are at undetectable levels in

rhoWT cells (and thus would have been missed from the

Dornenburg study).

In order to obtain a pathway-level view of the changes in gene

expression caused by rho*, we applied iPAGE [16] to identify gene

ontology (GO) pathways which share significant mutual informa-

tion with the log-ratio of rho* vs. WT RNA from microarray

experiments (see Text S1, Section 1.7 for details). In all, 19 non-

redundant GO terms show significant mutual information with the

expression profile for sense-strand RNA and 10 non-redundant

GO terms for the antisense profile (out of 1340 present in the

annotation set [17], using a threshold of p,0.0001). The changes

in expression patterns for a few example pathways of particular

interest are shown in Figure 1A, and the full set of significantly

perturbed GO terms is shown in Figure S3. These changes in

expression affect a variety of cellular pathways including diverse

aspects of metabolism and regulation; for example, genes involved

in transcriptional attenuation and post-transcriptional regulation

were over-expressed in the rho* background, which may represent

a regulatory coping strategy for minimizing the deleterious effects

of transcriptional read-through. For the most part, however, the

fitness consequences (if any) of these broad-reaching expression

modifications were not readily identifiable.

rho* shows direct fitness effects under a wide variety of
conditions

In order to measure the extent to which the altered gene

expression state of rho* MG1655 cells affects their fitness in

different environments, we compared the growth of these cells to

that of wild type cells in the presence of a variety of nutrient

conditions and antibiotics (see Text S1, Section 1.2 for details). We

identified 22 conditions (shown in Figure 1B and Table 1) in which

the relative fitness of WT and rho* differed significantly from that

in our reference condition (glucose minimal media), with 8

conditions favoring WT and 14 favoring rho* cells (we use steady-

state growth rate as a proxy for fitness unless otherwise noted; see

Section 2 of Text S1, Table S1, and Figure S4 for a discussion of

other relevant quantities). The number and nature of these

discovered environments show that the regulatory perturbations

caused by the rho* mutation functionally modify a variety of

pathways in the cell. In some cases the fitness differences between

WT and rho* cells can be directly explained by modified gene

expression. For example, the pathway-level analysis in Figure 1A

shows that pathways involved in oxidative metabolism are under-

expressed in the rho* background, which may explain their

increased aminoglycoside resistance [18]. Most conditions showing

fitness differences, however, defy such simple explanations.

rho* interacts with secondary mutations throughout the
genome

The varied, pleiotropic effects of rho* on fitness under different

growth conditions suggested that the rho* mutation may also result

in global changes in the fitness landscape, altering the effects of

any additional mutations. To test for such changes, we used fitness

profiling of transposon-mutagenized libraries [19] to create coarse-

grained representations of the fitness landscape under four

Author Summary

Bacteria rely on complex genetic regulatory networks to
respond to hazards or opportunities that they encounter.
These networks consist of a series of sensory modules,
coupled with various response elements that must be
appropriately activated to deal with a given set of
environmental conditions; all of these condition-specific
elements interact with the cell’s core machinery for gene
expression. When they encounter a novel environment,
populations of bacteria rapidly evolve to adapt to that
environment; alterations in gene expression play a major
role in this process and, in particular, mutations to the
cell’s central gene expression machinery are surprisingly
common in laboratory evolution experiments. Focusing on
one such mutation that had previously been shown to
enhance the host cell’s ethanol tolerance, we show that
the same alteration can in fact aid cellular survival under a
wide variety of conditions. In addition, the interactions of
this regulatory mutation with other genes throughout the
genome cause these mutations to fundamentally reshape
the effects of any other genomic changes that occur, and
thus alter the overall evolutionary course taken by a
population.

Fitness Landscape Transformation by Mutating Rho
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Figure 1. Comparison of transcriptional and phenotypic differences between WT and rho* cells. (A) Key pathways showing significant
patterns of over- or under-expression in rho* cells, assessed using iPAGE [16]. The log ratios of rho* to WT RNA at each probe were discretized as
shown at the head of each chart (breaks correspond to 3, 2, and 1.5-fold differences in either direction). For each pathway, coloring at each cluster
corresponds to the degree of over- or under-representation of that cluster in the relative expression level of genes in that pathway (with magnitude
equal to the negative log10 p-value for significance of the representation; positive and negative scores represent over- and under-representation,
respectively). (B) Ratios of rho* to WT growth rates under a variety of conditions showing significant fitness differences; dashed lines indicate the ratio
under the reference condition (black) or for equal growth rates (green). Error bars show a 95% confidence interval based on 10,000 samples from the
posterior parameter distribution (see Text S1, Section 1.3). Abbreviations are shown in Table S10. See Table 1 for concentrations of antibiotics used.
Ratios of rho* to WT growth rates differ significantly from that in the reference condition M9t/glucose (non-overlapping 95% confidence intervals) for
all cases except LB, which is included simply as a second useful reference.
doi:10.1371/journal.pgen.1002744.g001

Fitness Landscape Transformation by Mutating Rho
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conditions (a schematic of the procedure is shown in Figure 2A–2B

and detailed methods are provided in Text S1, Section 1.5; raw

data are available from the Gene Expression Omnibus, Accession

GSE32022). For a given condition, a modified fitness landscape

implies that there are loci whose fitness consequences are different

in rhoWT and rho* backgrounds. These loci, in turn, provide insight

into the specific mechanisms through which rho* alters the cell’s

regulatory and physiological state (we provide more detailed

analysis of several such cases, including follow-up experiments on

knockout strains, in Text S1, Section 3; see also Figures S5 and S6

and Table S2). Similar patterns emerged in all four conditions

tested: both the WT and rho* fitness profiles show hundreds of sites

at which transposon insertions lead to significant changes in

fitness, with the majority unique to one genetic background or the

other (see Table S3). Comparisons of the distributions of selection

scores between WT and rho* cells in each condition are shown in

Figure 2C; the low correlations between scores of genes in the two

genetic backgrounds under all four conditions indicate that the

fitness consequences of secondary mutations are heavily dependent

on the genotype at the rho locus, whereas correlations between

replicates from the same genetic background under each condition

are quite high. The overlaps of loci and pathways with significant

fitness effects in the two backgrounds are shown in Figure 3; in all

four cases, a common core of loci exists which strongly contributes

to fitness in both the rhoWT and rho* backgrounds, but the majority

(.70%) are unique to one background or the other. This indicates

that the effects of these mutations are in fact strongly altered by the

rho* allele. Consistently, in Figure 4 we show examples of several

loci where significant epistasis between rho* and a secondary

mutation was observed in defined strains during follow-up

experiments (details of the epistasis experiments and calculations

are given in Text S1, Section 4; see also Tables S4 and S5).

The genetic basis of laboratory-evolved ethanol tolerance

provides an example of the reshaping of the fitness landscape by

rho*. In the course of the experiments reported here, we found that

rho* alone is insufficient to confer the levels of ethanol tolerance

observed in the evolved strain from [7]. Instead, using global

linkage analysis, we found that an epistatic interaction between

rho* and rpsL* (a nonsense mutation in the S12 ribosomal protein

RpsL) provides a substantial portion of the increase in ethanol

tolerance (see Section 5 of Text S1, Figures S7 and S8, and Table

S6 for further details). Relative growth rates for all combinations of

wild type and identified mutant alleles of rho* and rpsL* are shown

in Figure 5. Whereas the rpsL*/rho* double mutant showed a

maximum growth rate of 1.01 doublings/hour in the presence of

5.5% ethanol, rho*/rpsLWT cells grew at 0.85 doublings/hour, and

both rhoWT/rpsLWT and rhoWT/rpsL* cells showed no or negligible

growth. Conversely, in LB alone the double mutant was less fit

than all other allelic combinations (despite the beneficial effects of

rho* in isolation.). Thus, rho* shows a positive epistatic interactions

with rpsL* in ethanol-containing media and a negative epistatic

interaction in the absence of ethanol.

Discussion

The wholesale reworking of the cell’s fitness landscape due to

rho* illustrates its potential to open evolutionary paths that would

not otherwise be accessible. rho* provides both direct fitness effects

and broadly varying (and often positive) epistatic relationships with

perturbations at other loci, allowing it to provide benefits early in

an evolutionary trajectory while at the same time providing a

different, and frequently larger, profile of possible adaptive

secondary mutations (see Tables S3 and S7). The interaction

between rho* and rpsL* described above represents one such case:

rho* itself provides a beneficial fitness effect in the presence of

ethanol, and also exhibits positive epistasis with a mutation at the

rpsL locus. A more general schematic is shown in Figure 6: the

fitness effects of mutations throughout the genome are strongly

influenced by the genotype at rho (and presumably other core

transcriptional proteins as well), making some secondary mutations

more or less beneficial than they would be otherwise (Figure 6,

genotype B). Mutations such as rho* can also both provide a fitness

benefit relative to the wild type under common growth conditions,

and reveal higher fitness genotypes upon exposure to stress

conditions (Figure 6, genotype C). rho* is expected to exert its

effects simply by altering transcription (in this case primarily by

allowing expression of regions which would not otherwise be

transcribed); we thus expect that mutations to other core

components of the cell’s transcriptional machinery, or to other

broadly influential regulators, would show similar levels of

evolutionary and phenotypic leverage.

Table 1. Conditions showing significant differences in
growth rate between WT and rho* cells (relative to growth in
M9t/glucose).

Media WT value (95% CI) rho* value (95% CI)

M9t/acetate 0.269 (0.258–0.279) 0.316 (0.304–0.329)

M9t/aKG 0.509 (0.489–0.531) 0.521 (0.504–0.548)

M9t/arabinose 0.947 (0.913–0.981) 1.034 (0.996–1.074)

M9t/glucose 1.017 (0.996–1.038) 1.079 (1.057–1.101)

M9t/glucose+CML1.875 0.379 (0.287–0.499) 0.294 (0.223–0.386)

M9t/glucose+STP 2.0 0.770 (0.7329–0.808) 1.030 (0.980–1.081)

M9t/glucose+NOV 150.0 0.867 (0.845–0.888) 0.862 (0.841–0.883)

M9t/glucose+TMP 0.5 0.287 (0.268–0.308) 0.249 (0.232–0.267)

M9t/glucose+CoCl2 (2.5 mM){ 0.781 (0.689–0.885) 0.648 (0.571–0.735)

M9t/glucose+FOS 2.5{ 0.434 (0.388–0.486) 0.511 (0.456–0.572)

M9t/glucose+RIF 1.5 0.870 (0.823–0.920) 1.021 (0.966–1.081)

M9t/glucose+PHL 0.5 0.802 (0.777–0.829) 0.948 (0.919–0.979)

M9t/glucose+BAC 100{ 0.742 (0.714–0.769) 1.085 (1.045–1.125)

M9t/glucose+TET 0.5{ 0.215 (0.167–0.280) 0.321 (0.249–0.416)

M9t/glucose+KAN 2.0{ 0.704 (0.599–0.829) 1.099 (0.934–1.295)

M9t/glycerol 0.577 (0.552–0.603) 0.636 (0.607–0.665)

M9t/lactate 0.571 (0.556–0.587) 0.532 (0.516–0.548)

M9t/lactose 0.967 (0.947–0.987) 1.095 (1.071–1.119)

LB 2.510 (2.345–2.688) 2.640 (2.469–2.828)

M9t/pyruvate 0.563 (0.555–0.572) 0.495 (0.486–0.504)

M9t/ribose 0.480 (0.462–0.498) 0.554 (0.533–0.575)

M9t/Tween20 0.253 (0.241–0.266) 0.240 (0.227–0.252)

M9t/xylose 0.744 (0.727–0.761) 0.877 (0.854–0.900)

M9t/NADM{ 0.049 (0.045–0.054) 0.094 (0.086–0.104)

Growth rates of selected strain/condition combinations are defined as
described in the Methods section of the main text. All growth rates are in
doublings/hour and include 95% confidence intervals from sampling of the
posterior model parameter distributions (see Text S1, Section 1.3). Significance
of differences was assessed relative to growth in M9t/glucose as described in
the caption for Figure 1. Growth in LB did not differ significantly from growth in
M9t/glucose, but is included as a useful reference point. Numbers of technical
replicates used for each growth rate are given in Table S11. Abbreviations are
listed in Table S10.
{: Effective growth rate; see Text S1 for details. Concentrations of additives are
given in mg/mL unless otherwise noted.
doi:10.1371/journal.pgen.1002744.t001

Fitness Landscape Transformation by Mutating Rho
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In support of this view, mutations to rho [10–13], RNA

polymerase [11,13,20–23] and DNA supercoiling proteins [24–

26] have frequently been observed in a variety of other recent

directed evolution experiments. In a few cases, specific epistatic

interactions involving these core transcriptional components were

found to shape the future adaptive trajectory of populations. For

example, Applebee and coworkers [23] found that in a set of E. coli

populations evolved to grow efficiently in glycerol minimal media,

RNA polymerase mutations arising earlier in the evolutionary

trajectories showed positive epistasis with subsequent glpK muta-

tions (and possibly mutations to dapF and murE as well). Similarly,

in analyzing populations from an extremely long-term evolution

experiment, Woods et al. [26] found the presence of two variant

topA alleles in competition; of these, the allele present in the

subsequently evolved strain had a less positive direct effect on

fitness, but also showed positive epistasis with a secondary

mutation at spoT that yielded an overall higher fitness phenotype.

In general, these previous studies have not, however, fully explored

the full breadth of both direct phenotypic and epistatic effects of

the housekeeping mutations that they identified.

Because the primary effect of a hypomorphic rho allele such as rho*

is to allow expression of regions of the genome that would not

typically be expressed (see above; also [3,4]), we thus see that the

impairment of a system setting baseline boundaries for gene

expression can in fact bring forth beneficial, but normally hidden,

phenotypes. The concept that robustness to the effects of mutations

may facilitate adaptive evolution by allowing the accumulation of

genetic diversity that can be subsequently released by a single

perturbation, has been proposed repeatedly in the theoretical

literature. Wagner [27] discussed the ‘‘neutral space’’ of a biological

system – a range of equivalent solutions to a given condition – and

notes that the presence of diversity within the neutral space allows

variation that may be useful under subsequently encountered

conditions. Draghi et al. [28] illustrated precisely this phenomenon

more quantitatively using a computational model, showing that

intermediate levels of robustness (modeled as the probability of a

Figure 2. Mapping of fitness landscapes of WT and rho* cells using transposon-mutagenized libraries. (A) Procedure used to identify
loci with significant fitness contributions. Transposon mutagenized libraries were constructed separately in the WT and rho* strains, and then grown
in parallel under selective conditions and a reference condition. Genomic regions adjacent to transposons were then selectively amplified. The
abundances of transposon insertions throughout the genome were compared between the condition of interest and the reference condition using a
two-color microarray. (B) Selective conditions used; M9t/glucose was the reference condition in all cases. (C) Comparison of gene-wise median fitness
scores (log2 ratio of reference:selected microarray signals) between WT and rho* cells under each condition. For reference, a similar comparison
between the two biological replicates of each strain/condition pairing is also shown. Pearson correlations (r) are given between WT and rho* signals
or between replicate experiments for isogenic cells, as appropriate.
doi:10.1371/journal.pgen.1002744.g002

Fitness Landscape Transformation by Mutating Rho
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given mutation being neutral) accelerated the adaptation of

populations by providing a reservoir of phenotypically neutral

genetic diversity, including variants that could be adaptive under

changing conditions. More recently, in modeling tradeoffs involved

in the regulation of translational readthrough, Rajon and Masel [29]

found bistable solutions which required either global regulation to

reduce readthrough rates, or a combination of higher readthrough

rates but reduced incidence of deleterious products upon read-

through; the high readthrough rate solution was found to be more

evolvable by allowing the accumulation of non-deleterious genetic

diversity downstream of translational stop sites, which can subse-

quently be incorporated through a single mutation to the stop codon.

Figure 3. WT and rho* backgrounds show remarkably different fitness landscapes. Bar charts show, from left, the number of genes,
intergenic regions, and pathways identified as having informative over- or under-representations of transposon insertions (see main text and Text S1,
Section 1.5 for details). Categories which appeared as significant in both WT and rho* data are further subdivided based on whether the pattern of
enrichment and depletion was correlated in the two backgrounds.
doi:10.1371/journal.pgen.1002744.g003

Figure 4. Epistatic interactions between rho* and secondary mutations. For each combination of a secondary mutation A and media
condition (shown on the x axis) considered in our follow-up experiments, the multiplicative epistasis erho*,A (see Eq. S7) is plotted, along with error
bars showing a 95% confidence interval (see Text S1, Section 1.3). Significant interactions (those for which the confidence intervals do not overlap
with zero) are colored according to their sign. Positive values of erho*,A indicate positive epistasis between rho* and the secondary mutation in
question (i.e., the fitness of the double mutant is higher than that expected based on the effects of the two mutations in isolation). Complete data for
all strains are given in Table S4. rpsL* strains in LB+ethanol are not shown due to the complete absence of wild type growth in this condition.
doi:10.1371/journal.pgen.1002744.g004

Fitness Landscape Transformation by Mutating Rho
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The behavior of rho* is also reminiscent of two phenomena

related to the core translational machinery of yeast. Jarosz et al.

[30] recently showed that the chaperone Hsp90 acts to suppress

the effects of genetic variation occurring naturally between yeast

strains; temperature stress or chemical inhibition of Hsp90 yielded

a wide variety of phenotypic changes among ,100 different yeast

strains under 100 low-level stress conditions, frequently with

differing signs of effect on fitness for different strains under the

same condition. Furthermore, the authors found that Hsp90 in

fact shows epistatic interactions with 20% of naturally occurring

genetic variations between the strains under consideration. Similar

phenomena have been observed for the yeast prion state [PSI+]

[31–33], where (as with rho*) an alteration in the behavior of a

regulatory protein gives rise to a highly pleiotropic phenotype

which may be harmful or beneficial under a variety of conditions,

interacts strongly with the precise genetic background of the cell in

question, and appears to exert its effects by causing ectopic

expression of sequences which are generally silent. The compar-

ison between both mechanisms in yeast and rho* must not be taken

too far, as there are also substantial differences, most notably in

that Hsp90 and [PSI+] act post-transcriptionally, [PSI+] in

particular represents an epigenetic rather than genetic mechanism,

and both the prion states and Hsp90 relaxation have been shown

to be encouraged by environmental stress [30,34], whereas no

similar mechanism would be expected to mutate core housekeep-

ing genes in stressed E. coli cells preferentially. Nevertheless, the

effects of both yeast mechanisms, and bacterial rho mutations,

illustrate that microorganisms possess the genetic potential to grow

under a broader array of conditions than their regulatory logic

allows, that some of the hidden potential may be unlocked through

perturbations of core regulatory proteins, and that even a single

such perturbation may unleash a wide variety of positive or

negative effects and interactions with other loci throughout the

genome.

Taken together, our findings illustrate that a single amino acid

substitution in the global transcriptional terminator Rho leads to a

wholly different regulatory and phenotypic state, in which gene

expression is globally altered and cellular fitness in a broad variety

of environments has changed. The same mutation also dramat-

ically alters the fitness landscape with regard to other genetic

variations, making accessible a number of beneficial secondary

mutations that are otherwise neutral or deleterious. The set of

states reachable through rho* or other point mutations of core

regulatory proteins comprise a previously underappreciated

reservoir of additional phenotypes accessible to bacterial popula-

tions under selective conditions. These findings imply a role for

mutations to regulators such as rho both as evolutionary catalysts,

by making a variety of secondary mutations more favorable than

they would be in the parental strain, and as evolutionary

capacitors [35], by allowing silently accumulating genetic diversity

to take effect rapidly upon changes in gene regulation. The full

extent to which this capacity of core housekeeping and regulatory

proteins is used during evolutionary trajectories, and the identity of

the complete set of genes showing such broadly influential

behavior, are not yet clear. It is also intriguing to speculate that

classical global regulators may also show similarly diverse effects,

Figure 5. Contributions of rho*-rpsL* epistatic interactions to
ethanol tolerance. Ratios of growth rates for each strain to those for
the rho*/rpsL* double mutant are shown for all permutations of mutant
and wild type alleles at these loci, in LB (left) or LB plus 5.5% ethanol
(right). See Section 5 of Text S1 for details on growth rate determination
in ethanol-containing media. Error bars indicate 95% confidence
intervals. Predictions for the double mutant in the absence of epistasis
are made using a multiplicative model (see Text S1, Section 4). Such
predictions are not possible in LB+EtOH due to the lack of rhoWT and
rpsL* growth.
doi:10.1371/journal.pgen.1002744.g005

Figure 6. Transformation of the fitness landscape caused by
rho*. Shown is a cartoon of the relative fitness of rho* vs. rhoWT cells
under typical growth conditions (blue) or a stress condition (red), with
genotypic variations running along the x axis. Genotype A in each case
represents a wild type background (aside from the status at rho). rho*
may directly alter fitness under the stress conditions, interact
epistatically with secondary mutations (genotype B, e.g. DvisC), and
uncover further beneficial mutations under stress conditions (genotype
C, e.g. rpsL*).
doi:10.1371/journal.pgen.1002744.g006
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either upon genetic perturbation or as a response to environmental

signals, given that the number of genes substantially perturbed by

rho* (,200) is comparable to the number directly or indirectly

affected by each global regulator (e.g., CRP, IHF, or FNR) [36].

Materials and Methods

A complete listing of strains in the present study, including

abbreviations used throughout the text, is given in Table S8, and

PCR primers are shown in Table S9. The E. coli K12 strain

MG1655 [37] (ATCC strain 700926) provides the genetic

background for all experiments reported here. For measurement

of transcript abundances, cells were grown to mid-log phase in

M9t/glucose, and RNA extracted using total RNA purification kit

(Norgen Biotek, Cat 17200). After poly-A tailing, the extracted

WT and rho* RNA were separately labeled, pooled, and then

hybridized to Agilent custom arrays tiling the whole genome at

50 bp intervals, alternating between strands. Transposon muta-

genized libraries were prepared as described by Girgis et al. [19].

Selections were carried out for 16 hours in 25 mL of either

selective or reference media, and genomic DNA isolated using a

DNeasy Blood and Tissue Kit (Qiagen). The transposon

footprinting and labeling protocol for quantifying relative fitness

under different conditions is described by Girgis et al. [18].

Bacterial growth curves were measured in Costar 96-well clear

polystyrene plates, using either a Biotek Synergy MX or Power-

wave XS2 plate reader (Biotek; Winooski, VT). Plates were

incubated at 37uC with continuous shaking, and optical density

(OD) reads at 600 nm taken every 10 minutes. Abbreviations for

nutrient sources and antibiotics are given in Table S10. Complete

methodological details are provided in Section 1 of Text S1, as

well as Figure S9.

Supporting Information

Figure S1 Two example loci showing over-expression in rho*

(top) or WT (bottom) cells. In each case, + and 2 strand RNA are

shown separately; the graphs show the smoothed log2 ratio of rho*/

WT RNA at each probe.

(TIF)

Figure S2 rho* disproportionately increases antisense transcrip-

tion. (A) Proportion of significant probes that are over- or under-

expressed in rho* cells, subdivided by whether they are sense or

antisense to the gene that they overlap (four significant probes, all

overexpressed in rho*, are both sense and antisense to known genes

because they overlap various sib loci; all four are excluded from the

chart). (B) log10 ratios of rho* to rhoWT transcription downstream of

the antisense transcription start sites identified by Dornenburg et

al. [15]. Each point represents a 250 bp window (windows are

spaced at 50 bp increments and thus overlap); the values shown

are the median across all 1,005 sites of the value of the median in

the appropriate window downstream of that transcription start

site. A loess smoothing of the points is shown as a blue dashed line.

Green and red dashed lines represent, respectively, the median

and 97.5th percentile from a set of 10,000 resampled data sets

calculated under random circular permutations of the transcrip-

tion data; all values are offset by the median of the resampled data

sets to center the distribution.

(TIF)

Figure S3 Complete iPAGE output showing the set of pathways

with significant patterns of over- or under-expression in WT vs.

rho* cells. Expression data were quantized with breaks corre-

sponding to 3-, 2-, and 1.5-fold differences in either direction. At

the head of each matrix the distribution of probe-level intensities

present at each cluster is shown. Each matrix entry is then colored

based on the significance level of over-representation (red) or

underrepresentation (blue) of the corresponding cluster in probes

belonging to each pathway.

(TIF)

Figure S4 Typical growth curves for rho* and DyagM strains in

M9t/glu+STP (2 mg/mL).

(TIF)

Figure S5 Microarray results in the vicinity of yagM. Top:

Relative RNA abundance between WT and rho* cells growing in

M9t/glucose. The raw log2 ratio (WT/rho*) was smoothed

separately along each strand using a Gaussian kernel with width

equal to one probe (100 bp). Bottom: Z-scores from transposon

library selections comparing growth in M9t/glucose+streptomycin

(1.25 mg/mL) with M9t/glucose, smoothed using a running

median over a 500 bp window. Negative scores indicate

enrichment of an insertion in the selected condition relative to

the unselected condition.

(TIF)

Figure S6 Microarray results in the vicinity of aroM. Top:

Relative RNA abundance between WT and rho* cells growing in

M9t/glucose. The raw log2 ratio (WT/rho*) was smoothed

separately along each strand using a Gaussian kernel with width

equal to one probe (100 bp). Bottom: Z-scores from transposon

library selections comparing growth in M9t/a-keto glutarate with

M9t/glucose, smoothed using a running median over a 500 bp

window. Negative scores indicate enrichment of an insertion in the

selected condition relative to the unselected condition.

(TIF)

Figure S7 Smoothed depletion score profile from global linkage

experiments comparing growth in LB and LB+5.5% ethanol. (A)

Depletion scores (i.e., ratio of transposon insertion frequency

under unselective vs. selective conditions) for insertion of

fragments from the tagged rho* genome into the fully evolved,

ethanol tolerant strain (HGDE3) from Goodarzi et al. [7]. (B)

Depletion scores for the evolved ethanol tolerant strain receiving

DNA from the parental strain (data from Goodarzi et al. [7]).

Genomic coordinates run clockwise starting from the indicated

zero.

(TIF)

Figure S8 Typical growth rate data for rho* and rpsL* strains in

LB with 5.5% ethanol added. Data points before and after three

doublings of the initial optical density are shown as open and filled

circles, respectively. Linear regressions are included for the rho*/

rpsLWT and rho*/rpsL* cases as dashed lines.

(TIF)

Figure S9 Growth curves in M9t/NADM media. Raw (left) and

log-transformed (right) growth curves for all replicates of WT

(blue) and rho* (red) cells growing in M9t/NADM on a

representative day (after removal of outlier wells which appeared

to show optical artifacts). Dashed lines indicate the boundaries of

the region used for calculating the effective growth rates.

(TIF)

Table S1 Lag times and times to saturation for rho* vs. rhoWT

cells under a variety of conditions. Antibiotic-containing condi-

tions and carbon sources yielding extremely slow growth were

omitted because they show atypical growth curves for which

classical definitions of lag time do not apply (and are often

negative). Ranges indicate 95% confidence intervals based on

draws from the posterior distributions of model parameters.

Quantities showing significant differences are bolded if they favor
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rho* cells over rhoWT, and italicized if they favor rhoWT cells over

rho* (for growth rates, we consider all values relative to growth in

M9t/glucose when determining whether they favor WT or rho*

cells).

(PDF)

Table S2 Comparison of growth rates for selected knockouts

with those for WT or rho* cells in the MG1655 background. For

each gene considered, the median RNA log2 ratio (rho*/rhoWT) is

shown for sense and antisense probes before and after the slash,

respectively; the selection Z-score for all probes centered inside the

target gene is also shown. Note that the RNA is isolated from WT

and rho* cells, not the knockouts under consideration. Growth rate

ratios C are defined as described in Text S1 (Eq. S4). Confidence

intervals (95%) for the growth rate ratios are calculated based on

10,000 samples from the posterior distribution of model

parameters. All significant quantities (defined as described in the

text) are bolded. {: Growth rates calculated using spline-guided

fitting.

(PDF)

Table S3 Number of distinct genes (prior to slash) and intergenic

regions (after slash) containing at least one probe flagged as having

a significant fitness effect in selections of transposon-mutagenized

libraries. ‘‘Unique’’ indicates the set of genes which contained one

or more significant probes in one genetic background (WT or rho*)

but not the other. ‘‘Strict’’ indicates that the threshold for

significance calling was relaxed for the background not being

considered (e.g., the entry for ‘‘WT unique (strict)’’ contains the

number of genes which had significant probes using the strict

criteria in the WT selection, but no significant probes using

relaxed criteria in the corresponding rho* selection); see Section 1.5

of Text S1 for details.

(PDF)

Table S4 Growth rates associated with secondary mutations

(labeled A) found to interact non-multiplicatively with rho*.

Growth rates c are given in doublings/hour; the absolute epistasis

e is calculated using Eq. S7 (see Text S1), with a 95% confidence

interval obtained via resampling of the posterior distribution of

model parameters. Concentrations of ethanol, CML (chloram-

phenicol), and STP (streptomycin) were 5.5% (v/v), 1.875 mg/mL,

and 2.0 mg/mL, respectively. {: Growth rates calculated using

spline-based fitting; see Section 1 of Text S1 for details. {: Relative

fitnesses obtained from competition experiments (see Text S1,

Section 1.9) thus, growth rates are omitted.

(PDF)

Table S5 Results of direct competition experiments used to

provide an additional test for epistatic interactions identified from

growth rate data. Values of the multiplicative epistasis are shown

based on growth rate data and on competition experiments.

‘‘p(|e|)’’ refers to the posterior probability (from competition

experiments) that the epistasis e is of the same sign as identified

from growth curve data.

(PDF)

Table S6 Growth rates obtained from replicate experiments and

pooled data on growth of rho*/rpsLWT and rho*/rpsL* cells in

LB+5.5% ethanol. In each case a linear regression was used on

data from log-transformed growth of exponential-phase cells, as

described in Text S1. ‘‘Combined’’ indicates the results of fitting a

linear mixed-effects model to the full data set.

(PDF)

Table S7 Comparison of evolvability of rhoWT and rho* cells

based on transposon-mutagenized library selections. The last four

columns show the number of distinct genes containing at least one

probe flagged as significant which gave an advantage (adv.) or

disadvantage (dis.) to cells carrying the corresponding insertion

during selection experiments in transposon-mutagenized libraries.

For comparison, growth rates of both strains are given in

doublings per hour; all differences between growth rates under

reference and selective conditions were significant (no overlap in

95% confidence intervals) except for the rho*/STP case. Of note,

rho* cells show greater evolvability (in terms of the number of

available adaptive secondary mutations) under three of the four

conditions, and under the fourth (STP) the amount of antibiotic

used relative to the tolerance of the rho* cells is so low that little

room for improvement is even present.

(PDF)

Table S8 Strains used in the current study. The entry in the

‘‘Name’’ column is used to refer to a given strain throughout the

text.

(PDF)

Table S9 Primer pairs used over the course of the current study.

(PDF)

Table S10 Abbreviations for nutrient sources and antibiotics

used throughout the study.

(PDF)

Table S11 Number of technical replicates used to calculate

growth rates and other statistics for each strain/growth condition

combination. One well on a 96 well plate is considered one

replicate. Technical replicates for each entry were in all cases

spread across at least two different plate reader runs on different

days. The tabulated counts do not include pruned replicates; see

Text S1 for details. {: replicates used for spline-based fitting. {:

replicates used for effective growth rate.

(PDF)

Text S1 Detailed methods, extended discussion, and supple-

mentary results.

(PDF)
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